Grade separated interchange at the intersection of

U.S. Hwy 17 Bypass and Farrow Parkway

Jeff Sizemore, P.E. Geotechnical Design Support Engineer SCDOT

Ed Tavera, P.E. Principal Geotechnical Engineer Geoengineers

Need for Project:

"The purpose of the project is to improve traffic flow, increase intersection capacity, and improve safety within the intersection and along US 17. The US 17 and SC 707/ Farrow Parkway intersection is currently experiencing substantial congestion during peak morning and afternoon travel periods."

Project Site

Existing US 17 Bypass

East

US 17 Bypass at SC 707/Farrow Parkway Myrtle Beach, SC

Existing Conditions

Proposed US17 Bypass

South Subsurface Profile

North Subsurface Profile

Station (feet)

Geotechnical concerns?

Project Design Constraints

- **Project Geometry and Layout** Project Constructed on Existing Alignment while maintaining all traffic movements
- Complex Traffic Control Staging Plan (traffic moved around several times)
- Total Project Construction Time Requirements Approx.
 3.5 years
- High Traffic Volume Combined with Limited Construction
 Staging Areas

Geotechnical Key Issues

- Consolidation Settlement, both total and differential
- Seismic Slope Stability (Liquefaction)
- Bridge Abutment Foundation Performance
 Extreme Event I and II

Settlement At Bridge Abutments (Normal Weight Fill)

Longitudinal Seismic Slope Instability

Transverse Seismic Slope Instability

Bridge Abutment Unimproved Foundation Performance

Ground Improvement Methods

- Lightweight Aggregate Borrow Material Reduce Magnitude of total and differential Settlement
- Prefabricated Vertical Drain (PVD) / Granular Surcharges – Increased Rate of Settlement during Construction to meet project time constraints
- Deep Soil Mixing used to establish Seismic Slope Stability and to improve Bridge Abutment Foundation Performance
- Mechanically Stabilized Earth (MSE) Walls Temporary faced MSE Walls used to allow wall deformations along the panel facing (2 stage walls)

Lightweight Aggregate (Rotary Kiln Produced)

Required Properties:

- Internal Friction Angle 40 degrees
- Unit Weight: 60 pcf minimum (Long-term 70 pcf maximum)
- MSE Wall Reinforced Backfill Properties

Settlement South Bridge Abutment (End Bent 1)

Settlement North Bridge Abutment (End Bent 7)

Prefabricated Vertical Drains (PVD)

Granular Surcharges

Required Properties:

- Internal Friction Angle 32 degrees
- Unit Weight: 120 pcf

Seismic Slope Stability Improved

Ground Improvement North/South Abutment (Typical)

Deep Soil Mixing

Deep Soil Mixing Lime-Cement Columns Block Type Pattern - Overlapping (Dry Mix Method)

- Seismic Slope Stabilization Shear Key
- Improved Performance of Bridge Abutment Foundations

DSM-LCC Test Sections

(Block Type Pattern)

Quadrants

(Single Line Pattern)

Legend

Bridge Abutment Improved Foundation Performance

Geotechnical Instrumentation

Settlement Monitoring

- 12 VW Settlement Sensors (SS)
- 15 VW Piezometers (P)
- 2 VW Data Collection Centers
- 10 Settlement Plates (SP)
- 2 Magnetic Extensometer (ME)

Slope Stability

• 6 Slope Indicator

Traffic Control Stage 2

Traffic Stage 2 – Ground Improvement

- MSE Walls
- Lightweight Aggregate Borrow Material
- 2', and 3' Granular Surcharge (Normal Weight)
- 3' and 4' Triangular Spacing PVD
- Geotechnical Instrumentation

Traffic Control Stage 3

Traffic Stage 3 - Ground Improvement

Ramp D

- MSE Walls
- Lightweight Aggregate Borrow Material
- 1', 2', and 4' Granular Surcharge (Normal Weight)
- 3' and 4' Triangular Spacing PVD
- Geotechnical Instrumentation

Traffic Control Stage 4

Backgate Bridge

South Bridge Approach

North Bridge Approach

Traffic Stage 4 - Ground Improvement

- MSE Walls
- Lightweight Aggregate Borrow Material
- 1', 2', and 3' Granular Surcharge (Normal Weight)
- 3' Triangular Spacing PVD
- Geotechnical Instrumentation
- Bridge Abutment DSM-LCC (South 30' x 133' x 50'deep – North 30' x 141' x 70'deep)
- Longitudinal DSM-LCC (South 5' Wide / North 8' Wide)

X- Section End Bent 7 (250+26)

US 17 By-Pass Centerline

MSE Wall Type: BP

Light Weight Fill

Deep Soil Mixing Lime-Cement Columns – Grout Design A

Deep Soil Mixing Lime-Cement Columns - Grout Design B

MSE Wall Type: BT

MSE Wall Type: RT

MSE Wall Type: RP

Sand Drainage Layer (PVD Drainage)

Initial MSE Wall Construction (2 & 3 Stage Wall Construction) Drainage Pipe **MSE Wall Soil Reinforcement Flexible** Wire **Light Weight Aggregate** B_{Reg} Facing Geotextile Separator Fabric

2-Stage MSE Wall Construction (Stage 1 of 2)

Permanent Precast Concrete Segmental Panel

MSE Walls

Permanent MSE Walls

- Two-Stage Construction
- Three-Stage Construction (w/Drainage Structures)
 Temporary MSE Walls
 (Modulated Mode Faction)

(Welded Wire Mesh Facing)

Bridge Abutment Construction (North Abutment – End Bent 7)

US 17- Bypass Over SC707/Farrow Parkway (Backgate Bridge) Myrtle Beach, SC Horry County

> Thank You Any Questions?